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Introduction

Motivation

Example
2 —5b 7 10
1 3 9
4 8
o Is there a path between vertex 1 and vertex 9 of size at most 57
o Is there a vertex cover of size at most 57
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Introduction Computational Complexity

Complexity Theory

o Analyse how hard it is to solve a problem
e w.r.t. computation time (and space)

e Distinguish easy (tractable) and difficult (intractable) problems
e Tractable: can be solved in polynomial time

® The complexity class P (polynomial-time)
e Runtime bounds: n°®)
o Example: REACHABILITY, SORTING, ...
o Intractable: no hope for polynomial time algorithm

® The complexity class NP (nondet.-polynomial time) or higher
e Runtime bounds: 2"

o Example: VERTEX COVER, SAT, DOMINATING SET, ...
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Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (SAT)

Instance: A Boolean formula ¢.
Question: Is ¢ satisfiable?

Example (Instance of SAT)

(AV =BV C)A(DVB)A(DV—=C)A(~AV C)A(-AV B)

e What kind of problems are we interested in?
e Decision problems (yes/no answer)
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Introduction Computational Complexity

Intractability: The Class NP and beyond

e No hope for polynomial time algorithm NP-hard
e NP-hard: at least in the class NP
o NP-complete: known to be in the class NP NP-complete g
. . . o 3
o Combinatorial explosion! 2" @ s
e So NP-hard problem can't be solved? £
o Clever algorithms solve many instances
efficiently:
e |LP, SAT solver, ...
o But there is always a bad instance
Conjecture
P # NP
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Introduction Computational Complexity

The Source of the Hardness

What are the real world instances?

Why do the worst case exponential algorithms work in practice?

What properties does separate a good instance from a bad?
e Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k.

o Look at the problem from a two-dimensional point of view
e Parameter: anything that classifies the problem instances, e.g.:

e Size of the solution set
o Treewidth of a graph
e Max. number of literals in the clauses of a CNF-formula

e Some parameters are useful, most are not!
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Introduction Parameterized Complexity Theory

The Class FPT

Definition
A parameterized problem is fixed-parameter tractable (FPT) w.r.t.

parameter k if it can be computed in f(k) - n°1) time where f(k) is only
depending on k.

Shift the combinatorial explosion into the parameter

In other words: if k is fixed, we can solve the problem in polynomial
time
o The problem gets tractable

Remark 1: FPT results are always with respect to a parameter!

Remark 2: There is no bound on f(k) — might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)
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Introduction Parameterized Complexity Theory

The Class W[1] and beyond

o If a problem stays intractable w.r.t. a parameter?

o In the class WJ[1] or higher
e Hardness proofs by reduction

o Parameterized Complexity hierarchy W([t]
e Similar to the polynomial hierarchy

o Example: CNF-SAT with parameter k = maximal clause size
e jntractable for k > 3
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Fixed-Parameter Techniques
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Fixed-Parameter Techniques

The concept of FPT belongs into the toolkit of every algorithm
designer.
(Rolf Niedermeier, Friedrich-Schiller-Universitat Jena)
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Fixed-Parameter Techniques Data Reduction and Problem Kernels
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

Polynomial-time pre-procession
o Cut away the easy parts
What remains is a core that is difficult to solve

o Note: the same hardness as the original problem!
o Otherwise P = NP

Not only important for fixed-parameter algorithms!

o Also other approaches: approximation, heuristics, ...
e If there are (practical) data reductions then use them!

Two kinds of rules:

e parameter-independent: do not need to know the parameter
e parameter-dependent: need explicit knowledge about the parameter
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Weihe's train problem

Problem (WEIHE’S TRAIN PROBLEM)

Instance: A bipartite graph G = (S, T, E) with stations S and trains T
and a positive integer k.
Question: /s there a S’ C S of size k so that every train stops at a station

inS’.

e Special case of HITTING SET — NP-complete

Definition (Weihe's reduction rules)
For s,s’ € S and t,t' € T. N(v) denotes the of neighbours of v.
Station Rule N(s) C N(s’) then delete s.

Train Rule N(t) C N(t') then delete t'.
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe's train problem

Definition (Weihe's reduction rules)

For s,s’ € S and t,t' € T. N(v) denotes the of neighbours of v.

Station Rule N(s) C N(s’) then delete s.
Train Rule N(t) C N(t') then delete t'.

Example

e Station Rule:

N(s2) = {tz} C N(51) = {t1, 1o, ta} t
o delete s 2
()
e Train Rule: 53
N(t2) = {s1,53} € N(t1) = {s1, 53,55} ts
e delete t; S4
e Station Rule: N(sz) = {t3} C N(s3) = {to, t3} W >\
e delete s, = )
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe's train problem

Works very well in practice:

o Evaluation on real data (European train systems)
e About 10000 vertices reduced to sub-problems of size < 50

Only parameter-independent rules

Does not find all possible solutions

Drawback: we can not prove the effectiveness of this reduction!
o No guarantee that it works on all instances

Can we prove the quality of other reductions?
e Yes — Problem Kernels (next slide)
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)
Reduction to a problem kernel means to replace the instance (/, k) by a
reduced instance (I, k") such that

e k' < kand |I'| < g(k) where [ is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

(1, k) is a positive instance iff (I, k') is one,
the transformation from (/, k) to (/’, k) must be computable in
polynomial time.

The upper bound of the kernel is independent of the input size!
The solution to (I, k") must not yield a solution to (/, k)
e But most time it does!
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

VERTEX COVER: Buss's reduction to a Problem Kernel

Problem (VERTEX COVER)

Instance: A graph G = (V, E) and a nonnegative integer k.
Question: [s there a subset of vertices C C V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C.

e VERTEX COVER is the most intensively studied problem in the FPT
community

Buss's reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V.

VC3 For a vertex with degree > k, put this vertex into the cover
and delete it form the graph.

v
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss's reduction

Example
/\
2 5 7 10
e VC1: vertex 10
1 3 6 9 e VC2: vertex 1
e VC3: vertex 8
e VC2: vertex 9
4 8
Cover: {4,8,7} k=2
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss's reduction

Apply rule VC1-VC3 exhaustively:

o < k? edges

o < k? vertices

e Only if (G, k) is a positive instances of VERTEX COVER
Can be done in O(k - |V])

Rule VC1 and VC2 are parameter-independent

Rule VC3 is parameter-dependent

Search solution in the remaining graph

o Exhaustive search
o Any other (exact) VERTEX COVER algorithm

Find at least one solution but not all
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Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

Data reductions and problem kernels are important

e Not only for fixed-parameter algorithms
Some data reduction can not be proven but work well in practice
Some kernelization results are only of theoretical importance

e Parameter k is too big
e The bound on the kernel size g(k) is useless

Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.
(Rolf Niedermeier, Friedrich-Schiller-Universitat Jena)
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Fixed-Parameter Techniques Depth-Bounded Search Trees
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Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

e Exhaustively search for a solution in a tree-like fashion
e Used in many algorithms (e.g. in SAT-solving)

o Fixed-Parameter Algorithms: depth is bounded by k
e Small k leads to a small search tree

e Can be combined with data reduction rules
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Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: VERTEX COVER

Problem (VERTEX COVER)

Instance: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a subset of vertices C C V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C.

¢ Naive approach: branch on vertex
o Either the vertex is in the cover or not
e Search tree of size O(2")

o Fixed-parameter approach:
o By definition for each edge {v,w} € E one vertex must be in the cover
e Branch on the edges
e Continue the search for a k — 1 cover in G\ {v} and G\ {w}
e Search tree bounded by O(2)
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Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: VERTEX COVER

1 Vertex of degree 1: put the neighbour into the cover (like VC2)
2 Vertex v of degree 2:

e either both neighbours are in the set
e or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

e either v is in the cover
e or all its neighbours

i%\ o2,
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Fixed-Parameter Techniques

Impr. Depth-bound search tree: VERTEX COVER (2)

e Finer case distinction

e Search tree size O(1.47%)

e Best search tree known to-date: O(1.28)
e Even more extensive case distinction
e Organisational overhead hidden by O(-) notation

f(k)
6

Depth-Bounded Search Trees

; 0(24)

1
L

0
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Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

e Branch on a small subset
e One of the elements must be in the solution
e Shrink search tree with more involved case distinctions

e May decrease practical performance
e Computer aided case distinctions

e Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universitat Jena)
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Fixed-Parameter Techniques Iterative Compression
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Fixed-Parameter Techniques Iterative Compression

Iterative Compression

Definition (Compression Routine)

A compression routine that, given a problem instance and a solution of
size k, either calculates a smaller solution or proves that the given solution

is of minimum size.

e To find a solution iteratively call the compression routine
e If the compression routine is fixed-parameter algorithm
e — so is the whole algorithm
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Fixed-Parameter Techniques Iterative Compression

Iterative Compression: VERTEX COVER

Algorithm
1 Set V' :=0 and C := 0.
2 For each vertex v € V:
e Set V/:=V'U{v}and C:=CU{v}.
e Call the compression routine for (G[V'], C).

3 Output C.

e Invariant: C is always a minimal vertex cover for G[V']

e CU{v} is a valid vertex cover for G[V' U {v}]

e The compression routine yields the optimal solution for the subgraph
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Fixed-Parameter Techniques Iterative Compression

Compression Routine: VERTEX COVER

Algorithm

Input: cover C and graph G[V']
e (' is a modification of C

e Some vertices remain in the cover Y C C
o Other vertices S := C \ Y are replaced

® |S| — 1 new vertices from V' \ C
Idea: search all 2/€! partitions of C into Y and S
For all partitions:

e Y is already in the cover — remaining instance: G[V'\ Y]
e We do not take any vertices from S into the cover:

e |f there is an edge with both endpoints in S abort
e For all other edges: take the one endpoint that is not in S

Runtime compression routine: O(2!¢/m)

Runtime fixed-parameter algorithm: O(2Km - n)
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Fixed-Parameter Techniques Further Techniques
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Fixed-Parameter Techniques Further Techniques

Dynamic Programming

o Goal: prevent recomputation by storing intermediate results
e Table lookups
e Bottom up vs. recursive calculation (e.g. binomial coefficients)
e Example: BINARY KNAPSACK (AD1) with parameter W weight
e Runtime O(W - n)
e pseudo-polynomial-time algorithm

e Use dynamic programming to shrink depth-bounded search trees
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Fixed-Parameter Techniques Further Techniques

Tree Decomposition

Motivation: many hard graph problems are easy on trees
e e.g. VERTEX COVER, DOMINATING SET, ...

What makes trees so nice and can this be extended to general graphs?

Treewidth: measures how tree-like a graph is
e Remark: trees have a treewidth of 1

Basic approach:

e Find a tree decomposition of a graph
e Solve the problem on this tree decomposition
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Conclusion

Conclusion

Josef Eisl

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

Fixed-parameter algorithms are narrowing the gap between theory and
practice.

Problem kernels and data reductions are important! Even outside
FPAs.

Sometimes they can even explain why algorithms work in practice.
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Conclusion

Thank Youl

This is a subject that every computer scientist should know
about. (Foinn Murtagh, University of London)
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